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1. 

In the study of aircraft interior vibroacoustics the major dissipative mechanism at propeller
tone frequencies can be attributed to the dynamic interaction of the thermal insulating
layer in the cabin walls with the ambient vibration and acoustic fields. The most popular
materials currently used in these designs are those in the form of glass fibre blankets. At
these low frequencies the dynamical behaviour of the material is bi-phasal incorporating
both a fluid and an interacting structural or frame element. Although considerable work
has been reported on the modelling of these materials (see, for example, the publications
of Göransson [1], and Rice and Göransson [2] based primarily on fundamental work by
Biot [3] and Zwikker and Kosten [4]) the effect of frame non-linearity has been ignored.
Pritz [5], however, has pointed out that even at strain levels as low as 10−4, these effects
can be significant and typical fibrous materials can be expected to exhibit a softening
stiffness characteristic. He then reported on some vacuum based dynamical tests conducted
on denser architectural grade material and proposes functional models based on random
tests which relate transmissibility resonance frequencies and amplitudes to dynamic mean
square strain levels. In a previous paper by Rice et al. [6] similar tests were performed on
a fibrous test sample used in the aerospace industry under atmospheric test conditions and
the characteristic softening non-linearity was again noted. In that paper an attempt was
made to fit a (symmetric) functional model to the instantaneous reponse levels with partial
success.

In this letter a model of the stiffness non-linearity based on purely physical
considerations is proposed and is shown to agree well with dynamical measurements
performed on a fibrous material sample used in an aerospace application.

2. 

In this analysis only the stiffness element of the non-linearity will be considered while
the damping will be modelled in the usual way as a linear viscous process.

Observation of the fibrous wool in a low power binocular microscope shows that it is
composed of layers, up to 1 mm thick, of glass fibres orientated mostly in one distinct plane
(xy plane). The layers are linked by tangles of fibres aligned roughly perpendicular to this
plane (z direction). When sufficient stress is applied in the z direction to give strains of
around 5%, the layers can be seen to deform as a series of platelets of varying size and
thickness, loaded in the centre and restrained at the edges as shown in Figure 1. But, at
lower strains, additional restraint to the bending of these platelets is provided by single
fibres in the z direction which hook onto adjacent platelets like ‘‘Velcro’’. The response
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Figure 1. Platelet model of fibrous structure.

of the wool to out-of-plane loading at high tensile strains can therefore be investigated by
idealizing it as an array of deforming discs loaded centrally and restrained at the edges
by attachments to neighbouring discs. This interpretation is similar to some of the methods
used for modelling the elastic properties of foams [7]. At low strains, additional stiffness
is provided by the individual links within the plates, which disconnect progressively as
strain increases. Both of these stiffness mechanisms may be accounted for as follows.

1.1. Flexion of platelets
For a circular of modulus E loaded as shown by the force F, and simply supported at

the edges, the deflection d of the centre is given by

d=3F(1− n2)(3+ n)a2/2pEh3(1+ n) (1)

Since, for glass wool, n=0, this reduces to

s=9Fa2/2pEh3 = (9/2p)(sh/E)(a/h)4, (2)

where s=F/a2, which gives, on dividing through by h and setting o= d/h,

s=(2p/9)(h/a)4Eo. (3)

Let one now suppose that a fraction ft of the wool fibres are oriented in the z direction,
whilst the remainder are oriented in the xy plane. If the density of the wool relative to
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Figure 2. Arrangement of permanent cross-links.

Figure 3. Fibre bundle stacking.

the glass at zero strain is r0, then the in-plane modulus, by analogy with a foam [7] is given
by

E=Egr
2
0 (1− ft )2. (4)

Since the density r0 will change with strain, a more general value for the modulus will be

E=Egr
2
0 (1− ft )2/(1+ o)2 (5)

The number of fibres in the z direction per unit area, n, is

n= r0ft /pr2, (6)

where r is the radius of the fibre. If one supposes that half these fibres are grouped in
bundles to form links between the flexing platelets of Figure 1, one can develop a
relationship for (h/a). The cross-links between layers of wool can be idealized as a regular
hexagonal array of fibres (cf. Figure 2). If there are p fibres per cross-link, there are 4p
cross links per hexagonal cell, and thus

a=z4p/nz3=2rz2pp/r0ftz3. (7)

If one now assumes that the layers of wool consist of bundles of p fibres stacked as in
Figure 3, one finds that

h= rzpp/r0(1− ft ), (8)

which yields

h/a=zftz3/4(1− ft ). (9)

Combining equations (3), (6) and (9) gives a value for the modulus due to flexion of the
platelets.
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Figure 4. Stress-strain curve for the fibrous material.

1.2. Deformation of fibres
Provided none of the fibres linking the platelets become unhooked from one of the

platelets, their stiffness could be modelled in the same way as that of a foam:

s=(Egr
2
0 f 2

f /4(1+ o)2)o (10)

However, whilst this may apply in compression, in tension the fibres will progressively
unhook themselves as strain increases. This may be represented mathematically by a
Weibull [8] distribution of strengths as the probability PS that a link will survive a strain
o:

Ps =e−(o/o0)b (11)

where o0 is the characteristic strain at which 62% of the fibres have failed, and b is the
modulus of the strength distribution. The overall equation for response to stress is then

s=
Egr

2
0 f 2

t

(1+ o)2 0 p

24
+

Ps

41o, (12)

where Ps is given by equation (10) in tension, but is equal to 1 in compression. With
ft =0·03, r0 =0·0044, Eg =76 GPa, o0 =0·004 and b=1, one obtains the stress-strain
curve shown in Figure 4.

Figure 5. Seismic mass test set-up.
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Figure 6. Frequency responses under high and low excitation levels. The smoother curves are the simulated
ones.

3. 

3.1. Set-up
In order to validate the above theory, a simple seismic test shown schematically in

Figure 5 was conducted under ‘‘soft’’ vacuum conditions (Q20 Pa). This was necessary
to remove the significant stiffness and damping effects generated by entrained air which
for the present set-up rendered the primary resonance almost to be unobservable.

The dynamics of the fibrous material was assessed by measuring the effective linear
frequency response of the plate with respect to the shaker table motion under a range of
excitation levels. The excitation was band-limited and random and was generated by an
HP 35665A spectrum analyzer which was also used to sample, ensemble average and
calculate the transmissibility.

As the test material was highly compliant a light balsa loading plate of mass 0·97 g was
used in order to achieve a resonance frequency as close as possible to realistic blade-passing
frequencies. A non-contacting laser vibrometer was used to measure the response while
a standard accelerometer was used to measure the motion of the base plate. The sample
dimensions were 55 mm×55 mm×19 mm (height). By using this arrangement it was
possible to achieve a clear resonance peak which exhibited amplitude sensitivity at
frequencies in the region of 40 Hz although there is some evidence of a spurious peak
probably induced by sample mounting or stability problems.

3.2. Numerical simulation and results
In order to investigate the validity of the dynamic stress–strain model proposed in

section 2, fourth order Runge–Kutta simulations of the governing system differential
equation

(m+M/3)ür + cu̇r + f(o)=−(m+M/2)üb (13)
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were performed where ur represents the relative motion up − ub of the loading plate with
respect to the excitation table, m is the mass of the loading plate and M is the total mass
of the test sample. It should be understood that the viscous damping term here, cu̇r , is a
gross approximation to the dissipation within the fibres and in fact should be expected to
vary with response level [5, 6]. However, in order to focus on the stiffness issue it has been
assumed to be constant for the present study. The validity of equation (13) depends on
the assumption that the strain is constant with respect to the z direction and varies only
with time. The restoring stiffness force f(o) is calculated directly from the instantaneous
stress calculated by using relationship (12) with

f=As, (14)

which depends on a strain value given by

o=Ur /l. (15)

Simulations were then performed with excitation records üb used as input which were
identical to those which were also used in a series of experiments. Thus, modelled
transmissibilities calculated by using

T(v)=1−v2Ur (v)/U� b (v) (16)

could then be compared with experimentally observed transmissibilities to test the validity
of the stiffness model. This comparison is shown in Figure 6 for nominally high and low
levels of excitation (generating r.m.s. strains of the order of 0·008 and 0·002 respectively)
and for the parameter values set out above.

4.   

As can be seen the proposed model certainly has the capacity to model the softening
phenomenon correctly when using parameter values which are compatible with direct
measurement (Eg , r0) or observation ( ft , o0, b). b=1 represents an appropriate Weibull
modulus for this type of heterogeneous material and implies that the breaking strains of
the fibres follow a Poisson distribution which is scaled by the factor o0. With regard to
the material stress–strain relationship itself the asymmetric nature has the capability of
generating both an appropriate system response and a satisfying physical model. Such
asymmetry can prove difficult to identify experimentally in dynamic tests which may
explain much of the shortcomings of the results presented in reference [6] where a
symmetric exponentially based stiffness characteristic was inferred for this type of
structure. Clearly the exponential nature of the stiffness relationship modelled here by the
Weibull process appears to be an essential element in understanding the dynamic
behaviour of the material and it is interesting to note that some more naive models
(softening Duffing) used in test simulations for this failed due to static instability when
the excitation level was varied over the testing ranges. Finally although a linear damping
model was used here, it is clear that some non-linearity in the damping process should also
be considered as reported in references [5, 6] to further improve the model performance.
This will form the basis of further work.
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